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Abstract
eBPF (extended Berkeley Packet Filter) significantly enhances
observability, performance, and security within the Linux
kernel, playing a pivotal role in various real-world applica-
tions. Implemented as a register-based kernel virtual ma-
chine, eBPF features a customized Instruction Set Architec-
ture (ISA) with stringent kernel safety requirements, e.g.,
a limited number of instructions. This constraint necessi-
tates substantial optimization efforts for eBPF programs to
meet performance objectives. Despite the availability of com-
pilers supporting eBPF program compilation, existing tools
often overlook key optimization opportunities, resulting in
suboptimal performance. In response, this paper introduces
Merlin, an optimization framework leveraging customized
LLVM passes and bytecode rewriting for Instruction Rep-
resentation (IR) transformation and bytecode refinement.
Merlin employs two primary optimization strategies, i.e.,
instruction merging and strength reduction. These optimiza-
tions are deployed before eBPF verification. We evaluate
Merlin across 19 XDP programs (drawn from the Linux ker-
nel, Meta, hXDP, and Cilium) and three eBPF-based systems
(Sysdig, Tetragon, and Tracee, each comprising several hun-
dred eBPF programs). The results show that all optimized
programs pass the kernel verification. Meanwhile, Merlin
can reduce number of instructions by 73% and runtime over-
head by 60% compared with the original programs. Merlin
can also improve the throughput by 0.59% and reduce the
latency by 5.31%, compared to state-of-the-art technique K2 ,
while being 106 times faster and more scalable to larger and
more complex programs without additional manual efforts.
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1 Introduction
Extended Berkeley Packet Filter (eBPF) is a Linux kernel
technology that allows safe, sandboxed execution of user-
provided programs to efficiently observe and trace various
kernel objects like networking stacks, system calls, and file
systems [8]. eBPF provides a programmable interface for
users to customize monitoring and performance analysis
without having to modify kernel source code. Since its intro-
duction in Linux kernel 4.4, eBPF has been widely adopted
in major cloud providers and companies to build efficient
observability tools [1, 2, 5, 6, 12]. These tools greatly boost
security and visibility of cloud services [1, 6] and enables
better network scalability and performance [2, 5, 12].
The eBPF bytecode executed inside the kernel has an in-

dependent architecture from native code and can be directly
interpreted or Just-In-Time (JIT) compiled to native instruc-
tions for efficiency. eBPF programs are written in C/C++
and compiled into eBPF bytecode via the LLVM compiler
toolchain. The Linux kernel provides a restricted virtual
machine via eBPF hooks like tracepoints, kprobes, and sock-
ets to execute the bytecode safely. Before loading any eBPF
program into the kernel, a verifier statically analyzes it to
ensure safety and validity. The verifier enforces constraints
on instruction sequences, data types, memory accesses, loop
bounds etc., to guarantee the program does not violate kernel
memory protections or crash the system.
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The limited bytecode format coupled with stringent veri-
fier checks necessitates heavily optimizing eBPF programs.
First, eBPF bytecode has a restricted length and limited num-
ber of instructions per program. The verifier rejects any
program exceeding these limits to prevent unbounded execu-
tion in kernel. Without optimization, many useful programs
risk tripping these constraints leading to failed loads. Sec-
ond, eBPF hooks deeply integrate with critical kernel paths
like networking and syscalls. Any inefficiency in attached
eBPF programs can significantly impact overall system per-
formance and throughput.
However, existing compiler toolchains like LLVM have

limited eBPF-specific optimization capabilities. General pur-
pose compilers lack intricate knowledge of eBPF virtual ma-
chine intricacies and verifier constraints needed to perform
suitable optimizations. Customizing them requires exten-
sive manual effort and deep kernel expertise. Further, the
verifier’s stringent validation frequently rejects valid pro-
grams as it evolves to protect kernel integrity. This renders
many conventional optimizations inapplicable and makes
enhancing eBPF code highly challenging.
Currently, only few researches are done to resolve the

optimization issue. K2 [57] formalizes equation check and
verification of eBPF programs, and uses stochastic search
to find a more efficient program. However, this approach is
time-consuming, potentially requiring months to identify an
optimal solution for extensive eBPF programs. KFuse [36] en-
hances performance by merging post-verification programs
through the detection of program chains, thereby minimiz-
ing the penalties of indirect calls. Nonetheless, this method
does not apply direct optimizations to the code itself.

To address these issues, we analyze the Linux eBPF docu-
mentation and implementation [10], identify missing opti-
mizations, and design an optimization framework that holisti-
cally integrates custom optimizations into the standard eBPF
build process. Our key insight is leveraging two comple-
mentary techniques: 1 Transforming LLVM IR via custom
optimization passes to exploit eBPF-aware improvements
early in compilation pipeline. 2 Refining final eBPF byte-
code to target verifier constraints and utilize eBPF virtual
machine features. The IR optimizations inject domain knowl-
edge like registers and alignment into the compiler IR. The
bytecode refinements directly optimize bytecode right before
loading into kernel. This two-phase approach allows exploit-
ing optimization opportunities at different granularities. We
introduce optimizations like instruction merging, data align-
ment, and use of eBPF atomic operations to generate efficient
code. Our customized LLVM passes and bytecode analyzers
integrate seamlessly into the standard eBPF build process
without any workflow disruption or failing eBPF verification.

We implement the proposed techniques in a system called
Merlin and evaluate it on various real-world eBPF programs
from domains like networking, observability, and security.
The results show that Merlin can reduce the NI (Number of
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Figure 1. eBPF Workflow

Instructions) by 73% and runtime overhead by 60% compared
with the original programs. Meanwhile, Merlin can also im-
prove the throughput by 0.59% and reduce the latency by
5.31%, compared to state-of-the-art technique K2. Our fine-
grained IR and bytecode optimizations significantly enhance
the efficiency of eBPF program without failing the verifica-
tion. The compiler integrated approach also simplifies adop-
tion. The improved performance and compactness have pos-
itive implications for eBPF’s use in latency-sensitive cases.

In summary, we make the following contributions:
• We introduces novel optimizations by customizing IR
for eBPF and making eBPF instructions efficient.

• We implement our prototype, Merlin, which show-
cases the practical application of our research.

• We evaluate Merlin with network programs and se-
curity applications, illustrating effectiveness and effi-
ciency compared to existing works.

2 Background and Motivations
2.1 eBPF
Extended Berkeley Packet Filter, or eBPF, is a kernel exten-
sion that allows observing kernel objects. The eBPF user
space (in gray background) and kernel space (in yellow back-
ground) are shown in Fig 1. Users can write eBPF programs
with high level programming languages (e.g., C), and com-
pile them via the compiler (e.g., LLVM – Low Level Virtual
Machine) tool chain into eBPF bytecode (via clang and llc).
Lastly, users can load the program with the bpf() syscall,
which will first invoke a verifier to check if the program
satisfies designed constraints by static analysis and verifi-
cation techniques. eBPF kernel space is a virtual machine
that has an independent architecture and offers the flexibil-
ity of direct interpretation or translation into native code
through a JIT (Just-In-Time) compiler. If the program is safe,
the compiler will compile/interpret it and then attach it to
desired places via eBPF hooks, e.g., tracepoints in the kernel
or network devices. Collected information will be forwarded
to user space applications via eBPF maps.
Fig 2 shows an example including the user source code

written in C (up), corresponding LLVM IR (middle), and eBPF



Merlin: Multi-tier Optimization of eBPF Code for Performance and Compactness ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA

ValueValueTypeOperation

C7 01 00 00 20 00 00 00 //eBPF code

long  b  =  a  >> 32; //Source (in C)

%8 = ashr i64 %7, 32  //LLVM IR

Immediate

Opcode Dst Offset

Src

Values

Operation Type

Immediate
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Figure 2. Example on Compiling C to eBPF Code

bytecode (bottom). The source code performs a simple shift,
while the corresponding LLVM IR and eBPF bytecode use
their own operations and opcode to represent these oper-
ators. We mark the corresponding variable and operators
in the same font color (from C to LLVM IR) or background
color (LLVM IR to eBPF bytecode). In particular, the LLVM
IR consists of operators, variables including their types, as
well as values (e.g., concrete numbers). It uses the format
%X where X is a numerical number to represent individual
variables. LLVM IR is using static single assignment (SSA),
and thus, every variable can be assigned only once. A single
eBPF instruction consists of 8 bytes, where the first byte is
opcode, indicating what operation to do. The second byte
represents the source and the target registers. The third and
the fourth bytes show the offsets, and the last 4 bytes con-
tain a 32-bit immediate number. In the whole eBPF pipeline,
compilers like clang compile the source code into LLVM IR,
and llc translates the LLVM IR into eBPF bytecode.

2.2 Related Works
eBPF Applications. Since eBPF can provide a good per-
formance on data planes, and has high flexibility, it has
been widely applied in performance-critical network appli-
cations [43, 48, 56, 58–60]. For example, Xhonneux et al. [56]
demonstrate the possibility of eBPF for custom network func-
tionalities. After that, Miano et al. [43] emulates iptable se-
mantics with eBPF, providing a noticeable performance boost
compared to current iptables. For more complex scenarios,
Polycude [46] provides the framework to create arbitrary
complex network functions inside the kernel. Besides these
applications, hXDP [17] accelerates packet processing on
FPGA NICs with eBPF-based software. Electrode [60] then
improves distributed protocols by implementing userspace
functions in kernel space with eBPF.

Besides network-related tasks, eBPF has also been used in
security tasks because it can provide guarantees for program
safety [18, 26, 32, 39, 50, 52, 53]. For example, eAudit [50]
and saBPF [39] apply eBPF in provenance systems, enabling
more secure and scalable data provenance. Bpfbox [26] also
proves that eBPF-based confinement is more flexible and
provides more access control options than previous systems.
Jia et al. [32] allow users to install their own advanced filters
by creating a new Seccomp eBPF program type.

Domain-specific Optimization. Although eBPF has been
widely adapted in existing systems, the runtime overhead
of eBPF is high, and the optimizations on eBPF have not
been investigated well yet. Researchers have developed their
own techniques to help further improve the performance
and availability of eBPF programs. eAudit [50] introduces an
efficient encoding method to reduce the cost of user-kernel
communication. Miano et al. [44] proposed expanding the
bounded loop with LLVM IR to avoid rejection from the
verifier. After that, Miano et al. [45] proposed high-level op-
timization for traffic control, including hash functions, ran-
dom bits generations, and methods to reduce map lookups.
Although these optimizations perform well in specific tasks,
they are domain-specific and can not be generalized to all
eBPF programs, thus offering limited optimizations.
Code Optimizations. Code optimization is a common tech-
nique to improve the performance of the program [19, 21, 25,
28, 37, 38, 40, 51]. Compared with domain-specific optimiza-
tions, code optimizations usually can be applied to different
programs in certain language. For example, there are general
code optimizations like constant propagation [55] and dead
code elimination [35] that does the optimizations at multiple
levels, e.g. profiling at high level (source code level) [51],
or link-time optimization at low level (bytecode level) [22].
However, such architecture-specific optimizations take a lot
of places and are not practical for general programs. Also, fol-
lowing this line of work, the eBPF optimizations for security-
related tasks are rarely investigated. Zachary H. Jones [33]
and Scholz et al. [49] analyze the performance of a subset of
eBPF programs, but no optimizations are proposed. K2 [57]
formalizes eBPF programs and searches for more efficient
substitutions at the bytecode level but suffers from robust-
ness and time efficiency. Not to mention, it only supports
XDP programs. Compared with existing systems, our sys-
tem Merlin aims to build a multi-tier solution. By applying
optimizations at multiple levels, Merlin can produce stable,
fast, and safe results.

2.3 Motivation
Optimizing eBPF programs is challenging. Due to its criti-
cal role in the system, eBPF programs frequently interact
with core system subjects and objects. To ensure the safety
of the kernel, eBPF programs have to satisfy specific safety
constraints, posing extra complexity for developers. In par-
ticular, eBPF leverages a kernel verifier to carefully check
several conditions of the eBPF programs, including but not
limited to program termination, usage of loops, program
length, and memory access. Fig 3 gives an example to show
the uniqueness of eBPF. The two code pieces are semanti-
cally equivalent, i.e., zeroing values in the given addresses.
However, the left-hand-side code can be accepted by the
verifier while the right-hand-side one will be rejected. Be-
cause of the verifier, the goal of optimizing eBPF programs
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Figure 3. Example on Failed Optimizations

also includes reducing the size of the program (i.e., com-
pactness) besides performance due to the length constraint.
Since kernel 5.2, the limit is 1 million instructions, which
is not sufficient for large programs [7]. Developers must
navigate these constraints while optimizing eBPF programs,
balancing performance, size, and adherence to the verifier’s
safety checks. The unique nature of eBPF necessitates careful
consideration and specialized optimization techniques.

Existing compilers, e.g., LLVM – the most commonly used
one for eBPF development, can only perform basic and naive
optimizations, missing many opportunities. State-of-the-art
eBPF optimization method, K2 [57], leverages a machine
learning method. It leverages program synthesis to produce
optimized code and manually written models to check pro-
gram safety. As such, it requires non-trivial manual efforts
to write, maintain, and update these models corresponding
to the eBPF implementation. Moreover, program synthesis
techniques tend to be time consuming. As shown in [57], op-
timizing the xdp-balancer program that has 1771 instructions
with K2 takes two days, and the time grows exponentially
with the growth of program size.

In this paper, we tackle the program of optimizing eBPF
program by starting from analyzing its design documenta-
tion [10]. The document has listed general principles that
eBPF programs should follow (and any reasonable eBPF veri-
fier should check), whichmakes it a reliable source for design-
ing eBPF optimizations. We carefully select and customize a
set of optimization methods that satisfy the principle of eBPF
design, with the goal of better performance and compact-
ness. To be clear, these optimizations (or variants) have been
proposed in prior work and our contribution is identifying
proper ones and customizing them in the eBPF tool chain.

3 System Design
3.1 Overview
In this paper, we propose an eBPF optimization framework
Merlin, which uses a customized LLVM infrastructure with
new optimization techniques to emit more efficient eBPF pro-
gram. A schematic overview of the Merlin pipeline can be
gleaned from Fig 1. Our approach seamlessly integrates hy-
brid optimization techniques during the compilation phase.
When the LLVM IR is derived from source code, the IR first
undergoes optimizations by clang and then Merlin IR opti-
mizers, where we introduce additional optimizers, i.e., LLVM
passes. Once the optimized IR is generated, the original llc
will compile it to eBPF bytecode as usual. But before it is

- 71 02 25 00 00 00 00 00

// movzbl 0x25(%r0), %r2

- 67 02 00 00 08 00 00 0

// shll $0x8, %r2

- 71 01 24 00 00 00 00 00

// movzbl 0x24(%r0), %r1

- 4f 21 00 00 00 00 00 00

// orl %r2, %r1

+ 61 01 24 00 00 00 00 00

// movzwl 0x24(%r0), %r1

- %525 = load i16, i16* %110,    

align 1

+ %525 = load i16, i16* %110,

align 2

- 79 02 00 00 00 00 00 00

// movq 0x0(%r0), %r2

- 0f 12 00 00 00 00 00 00

// addq %r1, %r2

- 7b 20 00 00 00 00 00 00

// movq %r2, 0x0(%r0)

+ db 10 00 00 00 00 00 00

// xaddq %r1, 0x0(%r0)

- %131 = load i64, ptr %128, 

align 8

- %132 = add i64 %131, %130

- store i64 %132, ptr %128, 

align 8

+ %132 = atomicrmw add ptr

%128, i64 %130

monotonic, align 8

- 18 03 00 00 00 00 00 f0

- 00 00 00 00 00 00 00 00

// movq $0xf0000000, %r3

// (takes two intructions)

- 5f 38 00 00 00 00 00 00

// andq %r3, %r8

- 77 08 00 00 1c 00 00 00

// shrq $28, %r8

+ 67 08 00 00 20 00 00 00

// shlq $32, %r8

+ 77 08 00 00 3c 00 00 00

// shrq $60, %r8

- %855 = lshr i32 %850, 28

+ %851 = zext i32 %850 to 

i64

+ %852 = shl i64 %851, 32 

+ %853 = lshr i64 %852, 60

+ %854 = trunc i64 %853 to 

i32

- 62 0a fc ff 00 00 00 00    // movl $0, -0x4(%r10)

- 62 0a f8 ff 01 00 00 00    // movl $1, -0x8(%r10)

+ 7a 0a f8 ff 01 00 00 00    // movq $1, -0x8(%r10)

- 67 00 00 00 20 00 00 00    // shlq $0x20, %r0

- 77 00 00 00 20 00 00 00    // shrq $0x20, %r0

+ bc 00 00 00 00 00 00 00 // movl %r0, %r0

- b7 01 00 00 01 00 00 00    // movq $1, %r1

- 7b 1a c0 ff 00 00 00 00    // movq %r1, -0x40(%r10)

+ 7a 0a c0 ff 01 00 00 00    // movq $1, -0x40(%r10)
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Figure 4. Constant Propagation and Dead Code Elimination

loaded via bpf() syscall, Merlin applies another level of
optimization, which is the bytecode refinement to optimize
the program. Merlin is applied before the verifier and does
not change the kernel verifier or other components.

3.2 Optimizations
eBPF is a register-based virtual machine with ten 64-bit regis-
ters. For safety and design purposes, it has several constraints
on how it manipulates the data, e.g., variables should be
aligned, and higher bits need to be zeroed out upon shift-
ing. These details are abstracted from users, and it is not
obvious for general compilers, e.g., LLVM, to identify opti-
mizations that are specific to eBPF. To evaluate the potential
redundancy of instructions caused by data manipulation con-
straints, we designed two types of optimizations categories:
Category I: Instruction merging is one optimization tech-
nique that combines multiple instructions into fewer instruc-
tions (§ 3.3).
Category II: Strength reduction substitutes expensive
operations with computationally cheaper ones (§ 3.4).

3.3 Category I: Instruction Merging
Instruction merging is a program optimization technique
aimed at improving code efficiency by reducing redundancy
in instruction sequences. The basic idea involves identifying
and consolidating similar or identical instructions within a
program to create more compact and streamlined code. This
process seeks to eliminate unnecessary computations and
redundancies, subsequently enhancing the overall perfor-
mance of the program. By merging instructions that perform
equivalent operations, the compiler reduces the number of
executed instructions, minimizing both runtime overhead
and memory consumption. Instruction merging is particu-
larly advantageous in scenarios where repetitive sequences
of operations exist, as it enables the compiler to generate
more concise and optimized code, ultimately leading to im-
proved program speed and resource utilization. eBPF pro-
grams have a lot of redundant instructions, and we mainly
use two optimization strategies to handle them.
Optimization 1: Constant propagation (CP) and dead
code elimination (DCE). This optimization involves two
optimization methods that typicall work together. Constant
propagation replaces usages of variables with constant val-
ues if the compiler can determine the variable’s value is
constant. As a register-based virtual machine, eBPF operates
on registers and LLVM loads every variable and value into a
register before operating on them. This guarantees that all
variables are correctly loaded, but it unnecessarily translates
every store instruction of immediate values by first loading
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- 71 02 25 00 00 00 00 00

// movzbl 0x25(%r0), %r2

- 67 02 00 00 08 00 00 0

// shll $0x8, %r2

- 71 01 24 00 00 00 00 00

// movzbl 0x24(%r0), %r1

- 4f 21 00 00 00 00 00 00

// orl %r2, %r1

+ 61 01 24 00 00 00 00 00

// movzwl 0x24(%r0), %r1

- %525 = load i16, i16* %110,    

align 1

+ %525 = load i16, i16* %110,

align 2

- 79 02 00 00 00 00 00 00

// movq 0x0(%r0), %r2

- 0f 12 00 00 00 00 00 00

// addq %r1, %r2

- 7b 20 00 00 00 00 00 00

// movq %r2, 0x0(%r0)

+ db 10 00 00 00 00 00 00

// xaddq %r1, 0x0(%r0)

- %131 = load i64, ptr %128, 

align 8

- %132 = add i64 %131, %130

- store i64 %132, ptr %128, 

align 8

+ %132 = atomicrmw add ptr

%128, i64 %130

monotonic, align 8

- 18 03 00 00 00 00 00 f0

- 00 00 00 00 00 00 00 00

// movq $0xf0000000, %r3

// (takes two intructions)

- 5f 38 00 00 00 00 00 00

// andq %r3, %r8

- 77 08 00 00 1c 00 00 00

// shrq $28, %r8

+ 67 08 00 00 20 00 00 00

// shlq $32, %r8

+ 77 08 00 00 3c 00 00 00

// shrq $60, %r8

- %855 = lshr i32 %850, 28

+ %851 = zext i32 %850 to 

i64

+ %852 = shl i64 %851, 32 

+ %853 = lshr i64 %852, 60

+ %854 = trunc i64 %853 to 

i32

- 62 0a fc ff 00 00 00 00    // movl $0, -0x4(%r10)

- 62 0a f8 ff 01 00 00 00    // movl $1, -0x8(%r10)

+ 7a 0a f8 ff 01 00 00 00    // movq $1, -0x8(%r10)

- 67 00 00 00 20 00 00 00    // shlq $0x20, %r0

- 77 00 00 00 20 00 00 00    // shrq $0x20, %r0

+ bc 00 00 00 00 00 00 00 // movl %r0, %r0

- b7 01 00 00 01 00 00 00    // movq $1, %r1

- 7b 1a c0 ff 00 00 00 00    // movq %r1, -0x40(%r10)

+ 7a 0a c0 ff 01 00 00 00    // movq $1, -0x40(%r10)
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Figure 5. Superword Level Merging

them into a register. CP identifies such redundant operations,
and DCE removes these unnecessary load instructions.
As demonstrated in Fig 4, the original code snippet in-

tends to store the immediate value 1 to memory address r10
- 0x40. It first loads 1 into r1, and then, stores r1 to the
address r10 - 0x40. The optimization identifies that the
value in the store instruction is a constant 1 and replaces
the register r1 with the value 1. Then, the DCE removes the
load instruction. As such, the optimized eBPF code, given in
Fig 4, directly stores the immediate value 1 to the destination
address, reducing one line of code. This also translates into
saved CPU cycles due to the removal of the unnecessary
load operation. The verifier also benefits from it. Although
the two programs have the same final states in the verifier,
the optimized one directly update the memory value and
does not need the record the status of r1.
These two are well-known program optimization tech-

niques, which can be implemented by using the control flow
graphs and the IN and OUT sets. We reuse existing algorithms
to implement them. □

Optimization 2: Superword level merging (SLM) opti-
mizes identifies vectors of independent instructions operat-
ing on adjacent data and converts them into fewer instruc-
tions. For instance, the two separate operations in Fig 5 in
red respectively stores u32 0 and u32 1 to stack r10 - 0x4
and r10 - 0x8. However, this pair of operations can be com-
bined into a single action: storing 1 as u64 value to r10 -
0x8. When doing so, the 8-byte memory region is effectively
initialized to the same value, replicating the result of two
distinct store operations. In this case, the merged code is 2x
smaller than original code. It is particularly advantageous
when combining smaller data types like u8 to a large u64).
Similar to optimization 1, both programs have the same ver-
ifier states, but after optimization the verifier updates the
states faster using fewer steps.

Such optimizations can be identified by monitoring neigh-
boring addresses. When operators on adjacent addresses fall
into certain types, with the most represented example being
mov, we can merge them with fewer instructions. In many
cases, this is due to the fact that eBPF uses 64-bit registers. □

3.4 Category II: Strength Reduction
Strength reduction is a fundamental optimization technique
employed in compilers to enhance the efficiency of programs
by substituting expensive operations with less resource-
intensive equivalents. The primary objective is to replace
computationally expensive expressions with simpler, faster
alternatives. This often involves transforming high-cost op-
erations, such as multiplication or exponentiation, into less

- 71 02 25 00 00 00 00 00 // movzbl 0x25(%r0), %r2

- 67 02 00 00 08 00 00 00 // shll $0x8, %r2

- 71 01 24 00 00 00 00 00 // movzbl 0x24(%r0), %r1

- 4f 21 00 00 00 00 00 00 // orl %r2, %r1

+ 61 01 24 00 00 00 00 00 // movzwl 0x24(%r0), %r1

- %525 = load i16, i16* %110, align 1

+ %525 = load i16, i16* %110, align 2

- 79 02 00 00 00 00 00 00 // movq 0x0(%r0), %r2

- 0f 12 00 00 00 00 00 00  // addq %r1, %r2

- 7b 20 00 00 00 00 00 00  // movq %r2, 0x0(%r0)

+ db 10 00 00 00 00 00 00  // xaddq %r1, 0x0(%r0)

- %131 = load i64, ptr %128, align 8

- %132 = add i64 %131, %130

- store i64 %132, ptr %128, align 8

+ %132 = atomicrmw add ptr %128, i64 %130

monotonic, align 8

- 18 03 00 00 00 00 00 f0 // movq $0xf0000000, %r3

- 00 00 00 00 00 00 00 00 //(takes two intructions)

- 5f 38 00 00 00 00 00 00 // andq %r3, %r8

- 77 08 00 00 1c 00 00 00 // shrq $28, %r8

+ 67 08 00 00 20 00 00 00 // shlq $32, %r8

+ 77 08 00 00 3c 00 00 00 // shrq $60, %r8

- %855 = lshr i32 %850, 28

+ %851 = zext i32 %850 to i64

+ %852 = shl i64 %851, 32 

+ %853 = lshr i64 %852, 60

+ %854 = trunc i64 %853 to i32

- 62 1a fc ff 00 00 00 00 // movl $0, -0x4(%r10)

- 62 1a f8 ff 00 00 00 00 // movl $1, -0x8(%r10)

+ 7a 0a f8 ff 01 00 00 00 // movq $1, -0x8(%r10)

- 67 00 00 00 20 00 00 00  // shlq $0x20, %r0

- 77 00 00 00 20 00 00 00  // shrq $0x20, %r0

+ bc 00 00 00 00 00 00 00 // movl %r0, %r0

- b7 01 00 00 00 00 00 00 // movq $0, %r1

- 7b 1a c0 ff 00 00 00 00 // movq %r1, -0x40(%r10)

+ 7a 0a c0 ff 00 00 00 00 // movq $0, -0x40(%r10)
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(a) IR
- 71 02 25 00 00 00 00 00 // movzbl 0x25(%r0), %r2

- 67 02 00 00 08 00 00 00 // shll $0x8, %r2

- 71 01 24 00 00 00 00 00 // movzbl 0x24(%r0), %r1

- 4f 21 00 00 00 00 00 00 // orl %r2, %r1

+ 61 01 24 00 00 00 00 00 // movzwl 0x24(%r0), %r1

- %525 = load i16, i16* %110, align 1

+ %525 = load i16, i16* %110, align 2

- 79 02 00 00 00 00 00 00 // movq 0x0(%r0), %r2

- 0f 12 00 00 00 00 00 00  // addq %r1, %r2

- 7b 20 00 00 00 00 00 00  // movq %r2, 0x0(%r0)

+ db 10 00 00 00 00 00 00  // xaddq %r1, 0x0(%r0)

- %131 = load i64, ptr %128, align 8

- %132 = add i64 %131, %130

- store i64 %132, ptr %128, align 8

+ %132 = atomicrmw add ptr %128, i64 %130

monotonic, align 8

- 18 03 00 00 00 00 00 f0 // movq $0xf0000000, %r3

- 00 00 00 00 00 00 00 00 //(takes two intructions)

- 5f 38 00 00 00 00 00 00 // andq %r3, %r8

- 77 08 00 00 1c 00 00 00 // shrq $28, %r8

+ 67 08 00 00 20 00 00 00 // shlq $32, %r8

+ 77 08 00 00 3c 00 00 00 // shrq $60, %r8

- %855 = lshr i32 %850, 28

+ %851 = zext i32 %850 to i64

+ %852 = shl i64 %851, 32 

+ %853 = lshr i64 %852, 60

+ %854 = trunc i64 %853 to i32

- 62 1a fc ff 00 00 00 00 // movl $0, -0x4(%r10)

- 62 1a f8 ff 00 00 00 00 // movl $1, -0x8(%r10)

+ 7a 0a f8 ff 01 00 00 00 // movq $1, -0x8(%r10)

- 67 00 00 00 20 00 00 00  // shlq $0x20, %r0

- 77 00 00 00 20 00 00 00  // shrq $0x20, %r0

+ bc 00 00 00 00 00 00 00 // movl %r0, %r0

- b7 01 00 00 00 00 00 00 // movq $0, %r1

- 7b 1a c0 ff 00 00 00 00 // movq %r1, -0x40(%r10)

+ 7a 0a c0 ff 00 00 00 00 // movq $0, -0x40(%r10)
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(b) Optimized IR

Figure 6. Data Alignment Optimization

resource-demanding ones, like addition or bit-shifting. By
identifying opportunities for strength reduction, compil-
ers can exploit the mathematical properties of operations
to generate code that is both more concise and executes
more rapidly. This optimization is particularly beneficial in
performance-critical sections of code, leading to improved
runtime efficiency and reduced computational overhead.
Strength reduction underscores the importance of leveraging
arithmetic equivalences to streamline code execution and
maximize the efficiency of computational resources.
Optimization 3: Data alignment optimization aligns data
to match the word size of the processor, allowing accessing
the data in a single instruction. Unaligned access may require
multiple instructions to assemble a word from parts. As such,
instructions with proper alignments can significantly reduce
the computing cost.
Consider the IR depicted in Fig 6a as an example. The

original IR (in red) tends to load an i16 from pointer %110.
It translates to loading a 16-bit unsigned integer (u16) from
the address r0 + 0x24. This operation by default is specified
with align 1, namely, the address can only be byte-aligned.
Consequently, the u16 load operation is decomposed into
a sequence of 4 eBPF operations, as shown in Fig 6b: 1
The first operation loads the lower 8 bits of the target 16-bit
value from the original address (r0 + 0x24) and stored in the
register r1. 2 The second phase retrieves the upper 8 bits
of the target value by loading another u8 from the address
offset by one byte (r0 + 0x25) and storing this value in r2.
And 3 and 4 concatenate r1 and r2 to form the complete
16-bit target value. The third operation shifts r2 left by 8 bits,
correctly positioning this byte. Subsequently, line 4 employs
a bitwise or operation to merge the lower byte (held in r1)
into r2. This results in r2 holding the fully assembled 16-bit
target value after completing these operations. A properly
adjusted alignment can significantly speedup the loading.
As shown in Fig 6a with green, our optimization change the
alignment to be align 2, which allows loading the value
with only one load_u16 instruction.

In this case, although align 1 and align 2 yield the
same end result, the former forces the compiler to load the
value byte-by-byte and leads to the unnecessary assembling
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- 71 02 25 00 00 00 00 00 // movzbl 0x25(%r0), %r2

- 67 02 00 00 08 00 00 00 // shll $0x8, %r2

- 71 01 24 00 00 00 00 00 // movzbl 0x24(%r0), %r1

- 4f 21 00 00 00 00 00 00 // orl %r2, %r1

+ 61 01 24 00 00 00 00 00 // movzwl 0x24(%r0), %r1

- %525 = load i16, i16* %110, align 1

+ %525 = load i16, i16* %110, align 2

- 79 02 00 00 00 00 00 00 // movq 0x0(%r0), %r2

- 0f 12 00 00 00 00 00 00  // addq %r1, %r2

- 7b 20 00 00 00 00 00 00  // movq %r2, 0x0(%r0)

+ db 10 00 00 00 00 00 00  // xaddq %r1, 0x0(%r0)

- %131 = load i64, ptr %128, align 8

- %132 = add i64 %131, %130

- store i64 %132, ptr %128, align 8

+ %132 = atomicrmw add ptr %128, i64 %130

monotonic, align 8

- 18 03 00 00 00 00 00 f0 // movq $0xf0000000, %r3

- 00 00 00 00 00 00 00 00 //(takes two intructions)

- 5f 38 00 00 00 00 00 00 // andq %r3, %r8

- 77 08 00 00 1c 00 00 00 // shrq $28, %r8

+ 67 08 00 00 20 00 00 00 // shlq $32, %r8

+ 77 08 00 00 3c 00 00 00 // shrq $60, %r8

- %855 = lshr i32 %850, 28

+ %851 = zext i32 %850 to i64

+ %852 = shl i64 %851, 32 

+ %853 = lshr i64 %852, 60

+ %854 = trunc i64 %853 to i32

- 62 1a fc ff 00 00 00 00 // movl $0, -0x4(%r10)

- 62 1a f8 ff 00 00 00 00 // movl $1, -0x8(%r10)

+ 7a 0a f8 ff 01 00 00 00 // movq $1, -0x8(%r10)

- 67 00 00 00 20 00 00 00  // shlq $0x20, %r0

- 77 00 00 00 20 00 00 00  // shrq $0x20, %r0

+ bc 00 00 00 00 00 00 00 // movl %r0, %r0

- b7 01 00 00 00 00 00 00 // movq $0, %r1

- 7b 1a c0 ff 00 00 00 00 // movq %r1, -0x40(%r10)

+ 7a 0a c0 ff 00 00 00 00 // movq $0, -0x40(%r10)
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(a) IR

- 71 02 25 00 00 00 00 00 // movzbl 0x25(%r0), %r2

- 67 02 00 00 08 00 00 00 // shll $0x8, %r2

- 71 01 24 00 00 00 00 00 // movzbl 0x24(%r0), %r1

- 4f 21 00 00 00 00 00 00 // orl %r2, %r1

+ 61 01 24 00 00 00 00 00 // movzwl 0x24(%r0), %r1

- %525 = load i16, i16* %110, align 1

+ %525 = load i16, i16* %110, align 2

- 79 02 00 00 00 00 00 00 // movq 0x0(%r0), %r2

- 0f 12 00 00 00 00 00 00  // addq %r1, %r2

- 7b 20 00 00 00 00 00 00  // movq %r2, 0x0(%r0)

+ db 10 00 00 00 00 00 00  // xaddq %r1, 0x0(%r0)

- %131 = load i64, ptr %128, align 8

- %132 = add i64 %131, %130

- store i64 %132, ptr %128, align 8

+ %132 = atomicrmw add ptr %128, i64 %130

monotonic, align 8

- 18 03 00 00 00 00 00 f0 // movq $0xf0000000, %r3

- 00 00 00 00 00 00 00 00 //(takes two intructions)

- 5f 38 00 00 00 00 00 00 // andq %r3, %r8

- 77 08 00 00 1c 00 00 00 // shrq $28, %r8

+ 67 08 00 00 20 00 00 00 // shlq $32, %r8

+ 77 08 00 00 3c 00 00 00 // shrq $60, %r8

- %855 = lshr i32 %850, 28

+ %851 = zext i32 %850 to i64

+ %852 = shl i64 %851, 32 

+ %853 = lshr i64 %852, 60

+ %854 = trunc i64 %853 to i32

- 62 1a fc ff 00 00 00 00 // movl $0, -0x4(%r10)

- 62 1a f8 ff 00 00 00 00 // movl $1, -0x8(%r10)

+ 7a 0a f8 ff 01 00 00 00 // movq $1, -0x8(%r10)

- 67 00 00 00 20 00 00 00  // shlq $0x20, %r0

- 77 00 00 00 20 00 00 00  // shrq $0x20, %r0

+ bc 00 00 00 00 00 00 00 // movl %r0, %r0

- b7 01 00 00 00 00 00 00 // movq $0, %r1

- 7b 1a c0 ff 00 00 00 00 // movq %r1, -0x40(%r10)

+ 7a 0a c0 ff 00 00 00 00 // movq $0, -0x40(%r10)
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(b) Bytecode
Figure 7. Macro-op Fusion (read-modify-write example)

process, which is non-optimal. This increases the total exe-
cution time costs and intensify cache pressure due to more
frequent memory accesses. This optimization helps reduce
verification time. The verifier need to update the states of r2,
shifted r2, r1 and r4 separately for the original one, while
simply updating r4 in the optimized one.

For this optimization, Merlin calculates the offset of every
pointer to infer and adjust the maximum possible alignment
for memory instructions. The optimization in the aforemen-
tioned example resulted in 4x smaller code and performance
improvement, which can be more substantial when dealing
with longer types, e.g., u64. □

4 Implementation
4.1 IR Refinement
As shown in Fig 1, Merlin consists of a IR refinement com-
ponent to optimize LLVM IR code, which is the typical proce-
dure of optimizing eBPF code. Optimizations at the IR level
are implemented as LLVM passes compiled into shared ob-
ject (.so) libraries and dynamically loaded by LLVM opt
during optimization phase.
Optimization 4 (Category I): Macro-op fusion refers to
the optimization that combines multiple dependent instruc-
tions into a single macro-instruction.We use the RMW (Read-
Modify-Write) consolidation as an example, which identifies
a set of read, modify, and write instructions, which operate
on the same address, into a single AtomicRMW instruction.
Fig 7 demonstrates the concept of RMW optimization. The
red parts of Fig 7a and Fig 7b respectively show the original
IR and eBPF code, consisting of three steps:

load This instruction loads from the memory located at r10
with an offset of 0x10. The 1st line of eBPF code in
Fig 7b corresponds to this operation and stores the
loaded value in register r2.

add The instruction adds r1 to loaded variable, i.e., increas-
ing r2 by r1, as seen in the 2nd line of Fig 7b.

store The instruction stores the result back at the original
address. In Fig 7b line 3, the updated value of r2 is
written back to the address r10 + 0x10.

Fig 7a illustrate our optimization with green color. We em-
ploy a singular atomicrmw instruction, targeting the same
pointer and value. This optimization efficiently consolidates
the original IR’s processes – reading, adding, and then writ-
ing back to ptr %128 – into a single instruction. Correspond-
ingly, the resultant eBPF code, displayed in Fig 7b in green,
also undergoes similar transformation. Notice that here, we
use the adding variables as an example, and the value can be
immediate value as needed. Subsequently, our optimization
introduces the xadd operation to execute the combined read-
add-store function. Similarly, the operation is not limited to
add but also includes instructions that like or, and, or xor.

This optimization will reduce the eBPF code by two lines
for each applicable read-modify-write IR set. In verifier, the
atomic operation has the same state as the original store
operation. Thus, the optimization saves the verification time
of load and add operations. It not only simplifies the code
but also decreases the frequency of separate memory ac-
cesses, consequently lessen cache misses. The process also
ensures locked atomic operations, guaranteeing atomicity.
Note that while atomic operations typically introduce addi-
tional latency, many modern processors has dedicated hard-
ware support[23, 29], minimizing this delay. Indeed, the la-
tency of these operations in recent models is very close to
that of non-locked operations[27], that it generally does not
pose a significant concern.
Our implementation scans sequences of IR instructions

looking for compatible instructions to fuse, e.g., load-operate
pairs, and small sequences of arithmetic/logic operators.
Merlin replaces a sequence of fusible instructionswith fused
ones that encodes the same semantics. □

4.2 Bytecode Refinement
Merlin has a component of bytecode refinement, which
operates on the bytecode level to optimize the program.
This is because certain eBPF instructions cannot be directly
generated from LLVM IR, implying inherent constraints
in the scope of optimizations that can be applied at the
IR level. This limitation is significant as it points out the
boundaries of IR refinement, especially when targeting the
performance-critical eBPF environment. Our bytecode re-
finement in Merlin is designed to resolve this issue. There
are two typical scenarios that we need bytecode level op-
timizations. One is that existing compilers do not support
the use of some instructions, e.g. ALU-32 operations (Ex-
ample 5). Although ALU-32 operations can be enabled by
mattr=+alu32 option, the verifier may encounter difficulties
in accurately tracking these operations in kernel versions
prior to 5.13, as noted in [3]. Furthermore, one of the appli-
cations we analyzed was found to be rejected with ALU-32
operations in kernel version 5.15, yet functioned correctly
when this feature was disabled. Moreover, since there are
still servers using kernel version < 5.0, which does not sup-
port v3 instructions, these optimizations aim to provide key
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- 71 02 25 00 00 00 00 00 // movzbl 0x25(%r0), %r2

- 67 02 00 00 08 00 00 00 // shll $0x8, %r2

- 71 01 24 00 00 00 00 00 // movzbl 0x24(%r0), %r1

- 4f 21 00 00 00 00 00 00 // orl %r2, %r1

+ 61 01 24 00 00 00 00 00 // movzwl 0x24(%r0), %r1

- %525 = load i16, i16* %110, align 1

+ %525 = load i16, i16* %110, align 2

- 79 02 00 00 00 00 00 00 // movq 0x0(%r0), %r2

- 0f 12 00 00 00 00 00 00  // addq %r1, %r2

- 7b 20 00 00 00 00 00 00  // movq %r2, 0x0(%r0)

+ db 10 00 00 00 00 00 00  // xaddq %r1, 0x0(%r0)

- %131 = load i64, ptr %128, align 8

- %132 = add i64 %131, %130

- store i64 %132, ptr %128, align 8

+ %132 = atomicrmw add ptr %128, i64 %130

monotonic, align 8

- 18 03 00 00 00 00 00 f0 // movq $0xf0000000, %r3

- 00 00 00 00 00 00 00 00 //(takes two intructions)

- 5f 38 00 00 00 00 00 00 // andq %r3, %r8

- 77 08 00 00 1c 00 00 00 // shrq $28, %r8

+ 67 08 00 00 20 00 00 00 // shlq $32, %r8

+ 77 08 00 00 3c 00 00 00 // shrq $60, %r8

- %855 = lshr i32 %850, 28

+ %851 = zext i32 %850 to i64

+ %852 = shl i64 %851, 32 

+ %853 = lshr i64 %852, 60

+ %854 = trunc i64 %853 to i32

- 62 1a fc ff 00 00 00 00 // movl $0, -0x4(%r10)

- 62 1a f8 ff 00 00 00 00 // movl $1, -0x8(%r10)

+ 7a 0a f8 ff 01 00 00 00 // movq $1, -0x8(%r10)

- 67 00 00 00 20 00 00 00  // shlq $0x20, %r0

- 77 00 00 00 20 00 00 00  // shrq $0x20, %r0

+ bc 00 00 00 00 00 00 00 // movl %r0, %r0

- b7 01 00 00 00 00 00 00 // movq $0, %r1

- 7b 1a c0 ff 00 00 00 00 // movq %r1, -0x40(%r10)

+ 7a 0a c0 ff 00 00 00 00 // movq $0, -0x40(%r10)
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Figure 8. Code Compaction with movl

improvements introduced in v3 instructions. And the other
one is that the optimization pattern is obvious in bytecode
level but far more complex in the IR level (Example 6).
Optimization 5 (Category I & II): Code compactionwith
unsupported instructions. In this example, the program
operates on a u32 variable. Notice that all eBPF registers are
64-bit and eBPF is a register-based virtual machine. Thus,
the program has instructions to prepare a u32 value from
the 64-bit register. The initial bytecode, given in Fig 8 in red,
showing the LLVM generated code for this process, where
r3 is first shifted left by 32 bits, then shifted right by the
same amount to clear the upper half of the register.
Our optimization directly uses the 32-bit ALU operation

movl in Fig 8. This operation efficiently transfers the lower
half of one register to the target register, achieving the same
outcome as the shifting method but with greater conciseness.
movl is semantically equivalent but more compact, achieving
50%-100% latency reduction and 4-6x throughput in modern
CPUs [27]. Similar to previous optimizations, the verifier can
skip the status update of shlq and reach to the final state,
saving verification time.
This optimization is known as code compaction, which

looks for opportunities to use smaller instruction encodings
where possible. This optimization cannot be deployed at IR
level because no LLVM IR instruction directly translates to
movl. Thus, we implement this optimization in the bytecode
level. As popular types in existing programming language
have 32-bit length, extracting lower half of the register is a
common operation, making this optimization useful. □

Optimization 6 (Category I & II): Peephole optimiza-
tions in bytecode. In some cases, the bytecode shows easy-
to-optimize code patterns, while modifying the correspond-
ing LLVM IR is significantly hard. In this case, we use a
peephole optimization as an example. eBPF only provides
64-bit registers. Compilers have to generate code that masks
to unnecessary bits for smaller-sized values like i32 to guar-
antee safety of arithmetic operations. In many cases, the
general masking is verbose.
In Fig 9a, we show the original IR for logically shifting a

32-bit integer (i.e., i32) by 28 bits. It takes two instructions
for the eBPF code to load a 64-bit long immediate value into
the register r3. The loaded values are masks that will clear
the upper half of the register and bits that will be removed by
the shift operation. Subsequently, the next operation applies
this mask to the value register r8 (instruction 3), after which,
r8 is safe for the 28-bit right shift performed in the final step.
The optimized code is depicted in Fig 9b. Line 1 shifts the
value in r8 left by 32 bits, and line 2 shifts it right by 60 bits.

- 71 02 25 00 00 00 00 00 // movzbl 0x25(%r0), %r2

- 67 02 00 00 08 00 00 00 // shll $0x8, %r2

- 71 01 24 00 00 00 00 00 // movzbl 0x24(%r0), %r1

- 4f 21 00 00 00 00 00 00 // orl %r2, %r1

+ 61 01 24 00 00 00 00 00 // movzwl 0x24(%r0), %r1

- %525 = load i16, i16* %110, align 1

+ %525 = load i16, i16* %110, align 2

- 79 02 00 00 00 00 00 00 // movq 0x0(%r0), %r2

- 0f 12 00 00 00 00 00 00  // addq %r1, %r2

- 7b 20 00 00 00 00 00 00  // movq %r2, 0x0(%r0)

+ db 10 00 00 00 00 00 00  // xaddq %r1, 0x0(%r0)

- %131 = load i64, ptr %128, align 8

- %132 = add i64 %131, %130

- store i64 %132, ptr %128, align 8

+ %132 = atomicrmw add ptr %128, i64 %130

monotonic, align 8

- 18 03 00 00 00 00 00 f0 // movq $0xf0000000, %r3

- 00 00 00 00 00 00 00 00 //(takes two intructions)

- 5f 38 00 00 00 00 00 00 // andq %r3, %r8

- 77 08 00 00 1c 00 00 00 // shrq $28, %r8

+ 67 08 00 00 20 00 00 00 // shlq $32, %r8

+ 77 08 00 00 3c 00 00 00 // shrq $60, %r8

- %855 = lshr i32 %850, 28

+ %851 = zext i32 %850 to i64

+ %852 = shl i64 %851, 32 

+ %853 = lshr i64 %852, 60

+ %854 = trunc i64 %853 to i32

- 62 1a fc ff 00 00 00 00 // movl $0, -0x4(%r10)

- 62 1a f8 ff 00 00 00 00 // movl $1, -0x8(%r10)

+ 7a 0a f8 ff 01 00 00 00 // movq $1, -0x8(%r10)

- 67 00 00 00 20 00 00 00  // shlq $0x20, %r0

- 77 00 00 00 20 00 00 00  // shrq $0x20, %r0

+ bc 00 00 00 00 00 00 00 // movl %r0, %r0

- b7 01 00 00 00 00 00 00 // movq $0, %r1

- 7b 1a c0 ff 00 00 00 00 // movq %r1, -0x40(%r10)

+ 7a 0a c0 ff 00 00 00 00 // movq $0, -0x40(%r10)
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(a) IR

- 71 02 25 00 00 00 00 00 // movzbl 0x25(%r0), %r2

- 67 02 00 00 08 00 00 00 // shll $0x8, %r2

- 71 01 24 00 00 00 00 00 // movzbl 0x24(%r0), %r1

- 4f 21 00 00 00 00 00 00 // orl %r2, %r1

+ 61 01 24 00 00 00 00 00 // movzwl 0x24(%r0), %r1

- %525 = load i16, i16* %110, align 1

+ %525 = load i16, i16* %110, align 2

- 79 02 00 00 00 00 00 00 // movq 0x0(%r0), %r2

- 0f 12 00 00 00 00 00 00  // addq %r1, %r2

- 7b 20 00 00 00 00 00 00  // movq %r2, 0x0(%r0)

+ db 10 00 00 00 00 00 00  // xaddq %r1, 0x0(%r0)

- %131 = load i64, ptr %128, align 8

- %132 = add i64 %131, %130

- store i64 %132, ptr %128, align 8

+ %132 = atomicrmw add ptr %128, i64 %130

monotonic, align 8

- 18 03 00 00 00 00 00 f0 // movq $0xf0000000, %r3

- 00 00 00 00 00 00 00 00 //(takes two intructions)

- 5f 38 00 00 00 00 00 00 // andq %r3, %r8

- 77 08 00 00 1c 00 00 00 // shrq $28, %r8

+ 67 08 00 00 20 00 00 00 // shlq $32, %r8

+ 77 08 00 00 3c 00 00 00 // shrq $60, %r8

- %855 = lshr i32 %850, 28

+ %851 = zext i32 %850 to i64

+ %852 = shl i64 %851, 32 

+ %853 = lshr i64 %852, 60

+ %854 = trunc i64 %853 to i32

- 62 1a fc ff 00 00 00 00 // movl $0, -0x4(%r10)

- 62 1a f8 ff 00 00 00 00 // movl $1, -0x8(%r10)

+ 7a 0a f8 ff 01 00 00 00 // movq $1, -0x8(%r10)

- 67 00 00 00 20 00 00 00  // shlq $0x20, %r0

- 77 00 00 00 20 00 00 00  // shrq $0x20, %r0

+ bc 00 00 00 00 00 00 00 // movl %r0, %r0

- b7 01 00 00 00 00 00 00 // movq $0, %r1

- 7b 1a c0 ff 00 00 00 00 // movq %r1, -0x40(%r10)

+ 7a 0a c0 ff 00 00 00 00 // movq $0, -0x40(%r10)
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(b) Bytecode
Figure 9. Peephole Optimization

Masking and left shifting both address the issue effectively
while our method further speeds up the process by eliminat-
ing the need to load a mask. Note that it will save two lines
of code instead of one due to the fact that load 64-bit im-
mediate values require twice the instruction length in eBPF
architecture. Additionally, by dispensing with the mask, we
free up a register, opening up opportunities for further opti-
mizations. It is also worth noting that shift operations are
frequently used in hash functions in form of ror and rol.
Applying such optimization can greatly streamline hashing
functions, which is useful in network applications.

This optimizations is straightforward in the bytecode level.
However, the corresponding IR level code is shown in Fig 9a.
It extends the original one IR instruction to four. The first
one converts the original value to an 64-bit integer i64 using
the zero-extension instruction (zext), followed by shifting
the extended value left by 32 bits to discard any unnecessary
bits, and then, shifting right by 60 bits. Lastly, the value
is truncated back to the intended 32-bit integer i32 type
with the trunc instruction. This is because LLVM IR knows
that the original variable %850 is 32-bit and the original
version does not need to do any type casting. Until the code
generation phase, the compiler leverages the information
that eBPF only supports 64-bit registers to generate bytecode.
Modifying the code generation logic requires significant
efforts including the understanding of eBPF (e.g., ISA) and
details of compiler (e.g., register allocation). As such, Merlin
implements this in the bytecode level. □

5 Evaluation
We evaluate the performance of Merlin by answering the
following research questions (RQs):
• RQ1: How much can Merlin improve in terms of code
compactness and verification costs? (§ 5.2)

• RQ2: What are the improvements Merlin made to net-
work programs in terms of throughput and latency? (§ 5.3)

• RQ3:Howmuch canMerlin reduce the runtime overhead
of other domain-specific systems (e.g., sysdig)? (§ 5.4)



ASPLOS ’24, April 27-May 1, 2024, La Jolla, CA, USA Jinsong Mao, Hailun Ding, Juan Zhai, and Shiqing Ma

• RQ4:What are the additional compilation costs of Merlin
and its individual optimizers compared to the original
compilation chain? (§ 5.5)

• RQ5: What are the impacts of individual optimizer in
Merlin? (§ 5.6)

5.1 Evaluation Setup
Hardward and Software.Our prototype is built upon Python
3.8 and LLVM 17. All eBPF programs are jitted. We compile
them with clang and flag O2. We use𝑚𝑐𝑝𝑢 = 𝑣3 for support
of 32-bit instructions if the compiled program is accepted by
the verifier. Otherwise, we use𝑚𝑐𝑝𝑢 = 𝑣2. All of the pro-
grams used for experiments pass the verification from kernel
4.15 to 6.5. The presented results are consistent across kernel
versions unless specified. Code compactness, throughput,
and latency are tested on two xl170 nodes of CloudLab [24].
On cloudlab, we were able to retrieve the image and config
shared by Xu et al. [57]. Thus, the configuration is identical
to the settings of K2 and leads to a more straightforward
result. The nodes are also equipped with 10-core Intel E5-
2640v4 processors with PCIe 3.0 bus, 64 GB of memory, and
Mellanox ConnectX-4 adapters and are connected to a high-
speed 25G network. Other experiments (i.e., runtime and
compilation overhead) are conducted on a Ubuntu 22.04 (ker-
nel version 5.15) bare metal machine equipped with a Ryzen
8 cores 6800h CPU and 16 GB DDR5 4800 single stick mem-
ory. For best precision, we collect instructions for micro
benchmarks with Intel PT [29] with the same system but on
an Intel 7700K CPU and 16GBDDR4 3200 dual stick memory.
Benchmark. We evaluate Merlin on 19 XDP programs
from the Linux kernel, Meta, hXDP [17] and Cilium, and
three complex systems, i.e., Sysdig [11], Tetragon [13], and
Tracee [14]). We show the details of benchmarks in Table 1.
The first column shows the type of programs and the second
column presents the number of programs of its kind. The
largest, average, and smallest sizes of programs are shown in
the third column. Besides these, we show the mcpu version
we used for each kind of programs in the last column.
Metrics. We evaluate Merlin and existing systems by mea-
suring their improvements on code compactness, through-
put and latency (for network programs), general runtime
overhead (for other domain-specific systems), and additional
compilation costs. These metrics are widely used in existing
systems[30, 41, 43, 47, 48, 57] and we denote them below.
• Compactness. We use the reduction ratio of the Number
of Instructions (NI) to measure the compactness of programs
(i.e., the size of the programs). Specifically, the NI is defined
as the number of eBPF instructions of a section associated
with a function symbol. Since each eBPF instruction takes 8
bytes, NI is calculated as Size In Bytes over 8.
• Verification Cost.We use the Number of Processed Instruc-
tions (NPI) to measure the change of instructions processed
inside verifier. Note that NPI is always larger then NI because

Table 1. Details of Benchmarks
Number of
Programs

Program Size (NI) mcpuLargest Smallest Average
XDP 19 1771 18 141 v2
Sysdig 168 33765 180 1094 v3

Tetragon 186 15673 21 3405 v3
Tracee 129 16633 29 2654 v2

branches lead to multiple verifications per instruction. The
NPI and other verification properties (e.g., time costs) are
reported by kernel verifier and collected via 𝑏𝑝 𝑓 () syscall
with log_level=4. There are 7 local functions [9] that cannot
be verified alone. They are verified within the main function.
• Throughput and Latency. We measure the throughput and
latency of programs to evaluate the performance of Merlin
on network-related tasks. The throughput is reported as the
maximum loss-free forwarding rate (MLFFR [16]) of a single
core, in millions of packets per second (Mpps) at 64-byte
packet size. We setup two PCs (i.e. PC1 and PC2) to measure
the performance. On PC1, T-Rex[20] traffic generator gen-
erates the traffic. PC2 is the device under test (DUT). The
traffic moves from PC1 to PC2, and loops back to PC1. The
latency is calculated as the time spent to go over the loop. We
report the latency results under different workloads: 1 low:
lower than the throughput under an unoptimized pipeline;
2 medium: equals to the throughput under an unoptimized
pipeline; 3 high: equals to the throughput with the best-
found program; 4 saturate: higher than ‘high’ setting.
• Runtime Overhead. Runtime overhead refers to the addi-
tional execution time used by the optimized programs com-
pared to the original systems. More specifically, we denote
the reduction of such costs as outlined in Equation 1, where
𝑡𝑣 is the execution time of the program running alone, 𝑡𝑤/𝑜
is the execution time with the security system active in the
background, and 𝑡𝑤/ is the execution time with the Merlin-
optimized system running in the background. We test such
time costs and reduction with micro-tests and macro-tests.
We use lmbench[42] for micro-tests and postmark[34] for
macro-tests. Lmbench offers a wide variety of low-level tests,
such as installing signal handlers and executing basic system
calls. Postmark simulates the typical file system workload of
web and mail servers to provide insight into performance un-
der real-world scenarios. We run each test for ten trials and
then report the average results. Sysdig, Tracee, and Tetragon
are invoked with default settings, and the outputs are redi-
rected to /dev/null. Runtime overhead is important for fre-
quently active as well as long-running systems, and a good
optimization system should have a low runtime overhead
because a high runtime overhead can lead to an unacceptable
accumulation of operational costs.

𝑂𝑣𝑒𝑟ℎ𝑒𝑎𝑑𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 = 1 − (
𝑡𝑤/
𝑡𝑣

− 1)/(
𝑡𝑤/𝑜
𝑡𝑣

− 1) (1)

• Other PerformanceMetrics.Weuse perf to collect hardware
performance counters to show the improvements of Merlin
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(a) Compactness of Sysdig (b) Compactness of Tracee (c) Compactness of Tetragon

(d) Compactness of XDP Programs (e) Compactness Comparison (f) Impact on Verifier
Figure 10. Compactness and Verifier Stats of All Programs. 7 programs are program-local functions.

Table 2. Limitation of K2 and Merlin. Size* is NI of program
that can be optimized in reasonable time (e.g. < 2 days).

Instructions Set Helper Functions Maps Size*
K2 v2 XDP only Limited <2000

Merlin - - - 1 Million

on hardware devices. For network applications, we report
context switches, cache misses and branch misses of DUT
in 5 seconds under low and saturate workloads. For secu-
rity applications, we report instructions, CPU cycles, cache
misses and branch misses of each single test. Specifically, in-
structions are collected with Intel PT for micro benchmarks,
and general PMU event for macro benchmarks. To show the
statistics uniformly, context switches are reported in per-
centage of clang version. Instructions and CPU cycles are
calculated as percentage of original program.
• Compilation Cost. The compilation cost is presented as
the additional time spent by Merlin to finish the program
compilation compared to the compilation without any opti-
mization. It is worth mentioning that we usually only need
to pay the compilation costs once. Compared with runtime
overhead, systems are less sensitive to compilation costs.

5.2 RQ1: Compactness and Verification Cost
Compactness. The results of code compactness are re-
ported in Fig 10a to Fig 10e. The x-axis of all figures shows
the program indexes, and the 𝑦-axis denotes the reduction
ratio of NI. Specifically, the black bars in Fig 10e show the
results of the state-of-the-art system K2. Other different col-
ored bars represent the contribution of different optimizers.
Notice that K2 cannot provide optimization for other pro-
grams except XDP programs, as K2 did not formalize all
eBPF helper functions, as shown in Table 2. Therefore, we
compare Merlin with K2 only on XDP programs.

We first find that all optimized programs can pass the
verification. Overall, Merlin can improve the code compact-
ness of different programs (Fig 10). Across all XDP programs
(Fig 10d), we notice that Merlin can reduce the NI by up to
22.22%. On other systems (Fig 10a to Fig 10c), the NI can be
reduced even more (i.e., a maximum of 73.08%; on average,
59.81%, 7.48% and 6.20% respectively for Sysdig, Tetragon,
and Tracee). The result demonstrates the benefits and gen-
eralization of Merlin. Merlin is effective and can achieve
good results on different programs because Merlin offers
comprehensive optimization from high-level observations
to significantly reduce the redundancy of code and such
observations can generalize to different program cases.
We find Merlin produces more compact code than K2.

Specifically, Merlin outperforms K2 in 10 programs out of
19. Although Merlin cannot outperform K2 in some cases, it
is understandable because our implementation performs gen-
eral optimization while the optimization of K2 is application-
specific. Some complex optimizations that have been used
by K2 for XDP programs are not integrated in Merlin by de-
fault, but can be compatible with Merlin to further improve
the performance. Therefore, the results still prove the advan-
tages of Merlin compared with existing systems. We also
would like to emphasize that the effectiveness of Merlin is
particularly evident in larger programs by our design. For
instance, on the largest XDP program, xdp-balancer, our im-
provement is 26.2% higher than that of K2 , and the average
difference on smaller programs is only 0.26%. The reason is
that the time costs of K2 can increase exponentially with the
size of the program, and K2 stops searching before getting the
optimal program. Considering real-world programs usually
have a large size, we believe Merlin can be more scalable
and practical than existing systems in the real scenarios.
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Table 3. Throughput and Latency

Throughput (Mpps) Latency (ms)
Low Medium High Saturate

clang k2 Merlin load clang k2 Merlin load clang k2 Merlin load clang k2 Merlin load clang k2 Merlin
xdp2 9.814 10.101 9.940 9 21.080 19.829 20.787 9.81 47.833 20.219 22.568 10.1 89.523 42.958 96.481 10.3 103.872 97.754 98.90

xdp_router_ipv4 1.496 1.496 1.496 1 63.323 59.834 60.032 1.5 84.450 76.929 77.560 1.5 84.450 76.929 77.560 1.8 619.291 610.119 612.018
xdp_fwd 4.984 5.072 5.075 4.4 32.272 30.358 28.957 5 87.291 71.645 49.031 5.075 180.985 172.190 71.786 5.2 192.936 188.199 187.841

xdp-balancer 3.292 3.389 3.409 3 38.650 37.152 34.523 3.3 73.319 55.741 50.407 3.41 220.320 141.434 109.342 3.7 296.405 292.376 291.752

(a) Cache Misses of
XDP Programs.

(b) Branch Misses of
XDP Programs.

(c) Context Switches of
XDP Programs.

(d) Hardware counters stats of
xdp-balancer.

Figure 11. Hardware Performance Counter of All XDP Programs

We also find that all optimizers can provide improvements
in code compactness. More specifically, data alignment op-
timization, macro-op fusion, CP & DCE, code compaction,
peephole optimization, and SLM can provide 17.85%, 1.44%,
1.59%, 0.61%, 0.13% and 0.17% NI reduction on average re-
spectively. The results show effectiveness of each optimizer.
We also find that the specific effectiveness of different op-
timizers can vary on different programs since they target
different code redundancies. For example, data alignment
optimization usually provides the most significant improve-
ment because memory access is the most common behavior
among most programs, and it is designed to reduce the costs
of such memory accessing codes. We can conclude that all
optimizers are useful, and their designs are reasonable.
Verification cost. To show the impacts on verification
costs, we measure the NPI and time costs of programs in
verification. The results are included in Fig 10f. The 𝑥-axis
is the index of our tested programs. The 𝑦-axis shows the
reduction ratio of NPI and the verification time costs.

We find that Merlin can reduce both NPI and time costs
of verification. Specifically, Merlin can decrease the NPI
up to 89.6% and the time costs up to 85.2%. On average, the
numbers are 17.1% and 25.4%. The results show that Merlin-
optimized programs are efficient during the verification. We
want to reiterate that NPI is typically much larger than NI in
a program as the verifier walks through every unique path.
While the limitation of NPI is set to one million after kernel
version 5.2, it still can be easily hit with sufficiently complex
programs [4, 7]. During evaluation, we also find all three of
security applications have programs that exceed 100000 NPI
during verification, and Merlin is capable of reducing NPI
(e.g. from 169103 to 147915). The benefits are obvious when
the program needs to accommodate more functionality.

5.3 RQ2: Throughput and Latency
We measure the throughput and latency of systems on four
XDP programs, which are the only ones that can forward
traffic among all programs (the same setting as K2 [57]). We
show the results of clang (native compiler), K2 and Merlin
in Table 3. The columns show the program names, through-
put of each program, and the latency performance under
different workloads, which is measured in microseconds.
Overall, the results show both Merlin and K2 can ef-

fectively improve the throughput compared with clang on
small programs (i.e., xdp2, xdp_router_ipv4 and xdp_fwd),
and the performance is comparable. Specifically, Merlin can
improve the throughput by up to 3.55%, while K2 improves it
by up to 2.95%. The results show the effectiveness of Merlin
in terms of improving the throughput, and the improvement
is comparable with the most advanced existing systems.
For larger programs like xdp-balancer, Merlin provides

more improvements on throughput than existing systems.
Merlin improves the throughput by 3.55% compared with
clang, which is 5.71x larger than the average improvements
on small programs. When compared with K2, Merlin gets
0.59% higher throughput (while the difference on small pro-
grams are less than 0.2%). Merlin produces programs that
have higher throughput on large programs since Merlin
has better support for different-sized programs (as explained
in § 5.2). Therefore, Merlin is more generalizable compared
to size-sensitive random program searching.

When analyzing the latency results, we observe that while
K2 already optimized the program latency, Merlin provides
more significant improvements. On average Merlin reduces
latency by 6.89% with low workload, 29.93% with medium
workload, 27.78% with high workload and 2.54% with satu-
rate workload, which produces 10.06% more improvements
compared to K2. The results show the efficiency of Merlin
in terms of latency reduction. Merlin provide better latency
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Table 4. Security Application Benchmarks

Tests Vanilla Sysdig Tetragon Tracee
w/o

Merlin
w/

Merlin
Overhead
Reduction

w/o
Merlin

w/
Merlin

Overhead
Reduction

w/o
Merlin

w/
Merlin

Overhead
Reduction

lmbench (𝜇s)

NULL call 0.06 0.38 0.28 31.25% 0.06 0.06 0% 0.10 0.10 0%
NULL I/O 0.12 0.60 0.51 18.75% 0.12 0.12 0% 0.17 0.17 0%

stat 0.36 0.75 0.69 15.38% 0.37 0.37 0% 0.43 0.43 0%
open/close file 0.79 1.83 1.56 25.96% 0.80 0.80 0% 0.94 0.93 6.67%
signal install 0.10 0.44 0.34 29.41% 0.10 0.10 0% 0.15 0.15 0%
signal handle 0.83 1.27 1.17 22.73% 0.83 0.83 0% 0.88 0.87 20%
fork process 72.87 81.72 81.16 6.33% 96.01 95.45 2.42% 76.09 75.58 15.84%
exec process 321.53 392.70 353.71 54.78% 333.45 329.53 32.89% 337.39 331.83 35.06%
shell process 738.76 880.89 823.82 40.15% 758.76 753.81 24.75% 770.36 759.39 34.71%
file create (0k) 4.78 6.15 6.01 10.22% 4.84 4.82 33.33% 7.31 7.10 8.30%
file delete (0k) 3.02 3.87 3.77 11.76% 3.12 3.11 10% 5.29 5.28 0.44%
file create (10k) 9.73 12.74 12.40 11.29% 10.04 9.98 19.35% 13.30 13.21 2.52%
file delete (10k) 5.00 5.78 5.63 19.23% 5.13 5.09 30.77% 7.36 7.09 11.44%

AF_UNIX 3.42 6.01 5.68 12.74% 4.03 3.94 14.75% 5.43 5.45 0%
pipe 5.24 6.59 6.08 37.78% 9.60 7.65 44.72% 9.48 9.65 0%

Average 23.19% 14.20% 8.67%
Postmark (s) 58.86 82.54 78.73 16.08% 67.26 64.70 30.44% 59.90 59.27 60%

(a) Instructions of Security Apps (b) CPU Cycles of Security Apps (c) Cache Stats of Security Apps (d) Branch Stats of Security Apps

Figure 12. Hardware Performance Counter of All Security Programs

performance because Merlin has optimizations that espe-
cially benefits hashing and other regular network functions
(as mentioned in § 4.2).

Hardware performance counters.Additionally, wemea-
sured Merlin with hardware performance counters, and we
show the results in Fig 11a to Fig 11c. The results include
the statistics of branch misses, cache misses, and context
switches of four XDP programs. The tests are ordered in the
same order as Table 3 (i.e. from xdp2 under low workload to
xdp-balancer under saturate workload).

For cache stats, we observe that cache misses are consis-
tent before and after optimization for first three programs.
For xdp-balancer, we find a noticeable cache miss rate in-
crease. The reason behind this is that the total cache refer-
ences decreased from 10330 to 8412. The cache miss rate of
the same program xdp-balancer under saturate workload
also proves this: Merlin-optimized version provides lowest
cache miss rate. For branch misses, we observe that the num-
bers of branch misses are consistent between three versions
of programs. For context switches, Merlin provides better
performance than K2 for xdp2, xdp_fwd and xdp-balancer.
Merlin is especially advantageous on large program like
xdp-balancer, in which setting Merlin lowers the number
of context switches to a maximum of 85% whereas K2 can

only do 93%. The hardware performance counters suggest
that Merlin hepls to reduce context switches, cache events
and cache misses during runtime.

5.4 RQ3: Runtime Overhead.
We measure the additional time costs of running the op-
timized programs to show the efficiency of Merlin. The
results are shown in Table 4. The first and second columns
show the test environments and tested operations. The other
columns present the overhead under different systems. Specif-
ically, vanilla indicates the case with no provenance system
running. Sysdig, Tetragon or Tracee indicate test cases with
the corresponding systems running background. For each
kind of system, we report the results of using the original
eBPF programs and the results of using Merlin. We also re-
port the overhead reduction rate of Merlin compared with
the original eBPF settings defined in Equation 1.

From the results, we observe that Merlin can significantly
reduce the runtime overhead compared with the original
programs. On average, the overhead is reduced by 8.67%
to 23.19% on micro tests and from 16.08% to 60% on macro
tests. This result demonstrates the effectiveness of Merlin
regarding reducing the runtime overhead. Merlin is effi-
cient because existing systems (such as Sysdig) can run in
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the background for long periods of time while performing
frequent kernel-user data transfers, and the data alignment
optimization simplifies such data exchange process.

Hardware performance counters. We also evaluate the
performance of Merlin with hardware performance coun-
ters for these tests and show the results in Fig 12a to Fig 12d.
The results for each security application are listed between
two dashed lines, and the order of these tests are the same
as listed in Table 4 (i.e. starts from NULL call test, and ends
with postmark test. File read and write on 0k/10k are repre-
sented by one data point only because of write and read are
operated consecutively in lmbench).
On average, we observe that Merlin saves 12.16 instruc-

tions / 4.04 CPU cycles in micro benchmarks, and 17019.61
instructions / 17560.84 CPU cycles in macro benchmarks.
The results show that Merlin performs considerable im-
provements on both instructions and CPU cycles. For cache
misses and branch misses, we find that for lightweight jobs
like Null call or null I/O, the results vary. The reason is that
most tests in micro benchmarks lead to a fairly small num-
ber of cache events and branch events (e.g. <100). In such
scenario, the differences shown in figure is considered in-
significant. For macro benchmarks, there are no difference
either because there are always near 100% cache misses and
branch misses. Therefore, we conclude that Merlin is able
to make considerable improvements at runtime due to less
instructions and less CPU cycles.

5.5 RQ4:Additional Compilation Costs of Merlin
We measure the additional compilation costs of integrating
Merlin with existing programs to answer the question. The
results are shown in Fig 13a. The 𝑥-axis denotes the NI of
the original program, and the 𝑦-axis denotes the compilation
time cost of introducing certain optimization.

5.5.1 Overall Performance. For XDP programs, we find
that Merlin takes imperceptible time to optimize them, and
the compilation costs are lower than those of K2. Specifically,
the average cost of Merlin on all XDP programs is only
0.035 seconds, which is trivial compared with the system
running time and shows that Merlin is efficient for deploy-
ment. Compared with K2, Merlin is 3,201,561x faster on the
biggest program and 4937x faster on the smallest programs
shown in Fig 13b. On average, Merlin is six orders of mag-
nitude faster than K2. The results further show the superior
advantages of Merlin compared with existing systems. Not
to mention K2 only supports XDP programs.
For observation applications, the compilation costs of

Merlin are also not significant. From the results, we find
that Merlin only uses 17.224 seconds, 150.557 seconds, and
54.209 seconds on Sysdig, Tetragon, and Tracee. We also ob-
serve that the optimization of Tetragon is significantly more
time-consuming than that of other systems. The reason is
that Tetragon contains variants for different kernel versions,

(a) Time cost of Optimizers. (b) Comparison with K2.
Figure 13. Compilation Costs of Merlin. Labels are Data
Alignment Optimization (DAO), Macro-op Fusion (MoF), De-
pendency analysis (Dep), Code Compaction (CC), Peephole
Optimization (PO), and Superword Level Merging (SLM).

and those for recent kernels (>=5.3) contain bounded loops
or very large programs (NI > 10k), leading to a longer opti-
mization time. For other programs, we find that the time cost
grows almost linearly with program size. Merlin is able to
keep the time cost of most reasonable-sized program (NI <
103) under 0.1s. Even for very large programs (e.g., 33765 NI),
Merlin can handle it within 13 seconds. The results further
indicate the benefits and superior generalization of Merlin.

5.5.2 Efficiency of Individual Optimizer. To evaluate
the efficiency of individual optimizers, we evaluate the time
costs of deploying each optimizer.
We find that the time cost of applying each optimizer is

0.146 seconds on average, which is pretty low considering the
normal runtime overhead. Although we consider the highest
time cost, the cost is not significant (i.e., 13 seconds for static
analysis at bytecode level). The results further prove the effi-
ciency of deploying all of our optimizers. Since the additional
compilation of programs using Merlin does not impose a
high overhead, Merlin can bring economical enhancements.
For different optimizations, the costs of each component

are 0.029 seconds, 0.219 seconds, 0.904 seconds for Macro-
op fusion, data alignment optimization, and static analysis,
respectively. We find that static analysis is the most time-
consuming component. That is because it iterates all possible
data flows, including analyzing instruction, expanding loops,
and maintaining dependencies, making it especially costly
compared to other components. However, the process speeds
up other optimizations. As part of the result, the other four
optimizations only take less than 0.001 seconds on average.

5.6 RQ5: Case Study
• Load-Balancer. We use xdp-balancer to show the impacts
of our individual optimizer since it has the most applicable
optimizations (i.e., 5 out of 6). Starting with clang-compiled
program, we apply optimizations in sequence and record
the results after each optimization. The results are shown
in Fig 14. The ‘+’ mark shows throughput and lines with
different colors show latency under different workloads. The
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Figure 14. Latency and throughput of xdp-balancer.
stats of hardware counters are shown in Fig 11d. We find
that three optimizers contribute to over 90% improvements
of performance. Overall, data alignment optimization (DAO)
provides 68.2% throughput improvements, 38.0% average la-
tency reduction, 100% cache reference reduction, 100% cache
miss reduction and 44.8% context switch reduction. Code
compaction provides 21.1% throughput improvements, 45.3%
average latency reduction and 9.7% context switch reduc-
tion. Peephole optimization accounts for 9.1% throughput
improvements and 4.5% average latency reduction and 30.5%
context switch reduction. They are efficient because DAO
greatly speeds up data transferring for traffic handling. Code
compaction and peephole optimization streamlines the fre-
quently used jhash functions as discussed in § 4.2.
• Sysdig earns great code size improvements and is repre-
sentative as a domain-specific complex application. We use
the same settings as those of Load-Balancer. Fig 15 shows
the performance of Sysdig. We find that on average DAO
accounts for 72.7% overhead reduction, 97.9% NI reduction,
99.6% verification time reduction and 99.3% NPI reduction.
Data alignment optimization is designed dedicatedly for ap-
plications that require huge amount of data transferring.
During optimization, we find that the average alignment
of 18142 memory operations is 3.85, and after optimization
it becomes 4.81. Unlike other programs that have multiple
versions of kernel probes (e.g. Tetragon designs probes for
kernel 5.x and 6.x), the bpf programs in Sysdig have to fit in
different environments. Due to the number of system calls
that Sysdig needs to support, it is difficult for them to promise
alignment at source code level. This case further explains
the superiority of Merlin of having multi-tier optimizations,
which can address this problem easily.

6 Discussion
• Verifier states. The total and peak states (i.e., the maxi-
mal number of states in the verifier at any given time) of the
verifier can also reflect the impact of optimization. However,
we found them highly dependent on verifier implementa-
tions, as shown in Table 5. For different programs and kernel
versions, the peak and total state changes (before and after
optimization) in different kernel versions can be positive
(more states after optimization) or negative. As the develop-
ment of the eBPF verifier is still an active field [15, 31, 54],
we view these two metrics as unstable to use for evaluation.

Figure 15. Overhead of Sysdig
Table 5. State Change Over Kernel Versions

Program Name Kernel
Version sys_writev_pwritev_x execve_family_flags

Peak State
Change

5.19 -12.41% +49.84%
6.5 +12.27% -0.36%

Total State
Change

5.19 -14.31% +57.03%
6.5 +11.88% -8.72%

This instability also leads to verification time increase for
some of the programs.
• Completeness and robustness ofMerlin.We acknowl-
edge that due to our limited knowledge, understanding of
the eBPF design/principles, and engineering capability, we
may have overlooked some techniques that can be adopted
in eBPF program optimization, despite our best efforts in
adhering to constraints. We try to follow the safety principle
to the highest standard to ensure all optimizations in Merlin
can work in the future for any reasonable eBPF verifier imple-
mentation. For instance, even though loading 64-bit values
and pruning to 48-bit could offer performance improvements,
such optimizations were avoided due to unnecessary mem-
ory reading. Thus, we believe Merlin is far from complete
but relatively robust, and our results of Merlin working on
kernels from 4.15 to 6.5 demonstrated its capability.

7 Conclusion
This paper explores the potential of customizing IR within
the eBPF context and optimizing bytecode for enhanced
eBPF performance. Specifically, we integrate such code opti-
mization techniques to improve traditional eBPF programs
and propose our solution Merlin. With ensuring all opti-
mized programs pass the verifier, Merlin can reduce the
NI by 73%, and reduce the general runtime overhead by 60%
compared with the original programs. Additionally, improve
the throughput by 0.59%, reduce the latency by 5.31% com-
pared to state-of-the-art method K2 , while being 106 times
faster and scalable to larger and more types of programs.
The results show that using our optimizations is promising
in improving the performance of eBPF programs.
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